নিউটনৰ গতিৰ সূত্ৰ

testwikiৰ পৰা
১৪:৪৮, ১৯ ছেপ্টেম্বৰ ২০২৪-ত 2401:4900:3d3b:e079:d59b:60d2:2595:4254 (আলোচনা) সদস্য‌ই কৰা সংশোধন (তৃতীয় সূত্ৰৰ সৰল ৰূপ)
(পাৰ্থক্য) ← আগৰ সংশোধন | শেহতীয়া সংশোধন (পাৰ্থক্য) | নতুন সংশোধন → (পাৰ্থক্য)
নেভিগেশ্যনলৈ যাওক সন্ধানলৈ যাওক
লেটিন ভাষাত নিউটনৰ প্ৰথম আৰু দ্বিতীয় সূত্ৰ, ১৬৮৭ খৃ:ৰ মূল নথি প্ৰিন্সিপিয়া

চিত্ৰ:First law.ogv নিউটনৰ গতিৰ সূত্ৰ সমূহ হৈছে ধ্ৰুপদী বলবিদ্যা বা ধ্ৰুপদী বলবিজ্ঞান (Classical Mechanics)ৰ তিনিটা ভৌতিক সূত্ৰৰ সমষ্টি। এই সূত্ৰসমূহে কোনো বস্তুত ক্ৰিয়া কৰা বল আৰু এই বলৰ বাবে সৃষ্টি হোৱা বস্তুটোৰ গতিৰ সম্পৰ্ক প্ৰকাশ কৰে। এই সূত্ৰকেইটাক কেইবাটাও বিভিন্ন ৰূপত প্ৰকাশ কৰিব পাৰি ,[] যাক থুলমুলকৈ তলত দিয়া ধৰণে সামৰি ল'ব পৰা যায়:

  1. প্ৰথম সূত্ৰ: কোনো বাহ্যিক বলে ক্ৰিয়া নকৰালৈকে কোনো এটা বস্তুৰ বেগ ধ্ৰুবক হৈ থাকে।[][][]
  2. দ্বিতীয় সূত্ৰ: কোনো বস্তুৰ ত্বৰণ a ইয়াৰ ওপৰত প্ৰয়োগ হোৱা বল F অৰ সমান্তৰাল আৰু সমানুপাতিক হয় আৰু বস্তুটোৰ ভৰ m ৰ ব্যস্তানুপাতিক হয়। , অৰ্থাত, F = ma.
  3. তৃতীয় সূত্ৰ: দুটা বস্তুৰ মাজৰ বলৰ ক্ৰিয়া আৰু তাৰ প্ৰতিক্ৰিয়াৰ পাৰস্পৰিক মান সমান, সমৰৈখিক আৰু বিপৰীতমুখী।

ছাৰ আইজাক নিউটনে ১৬৮৭ খৃষ্টাব্দত প্ৰকাশিত তেওঁৰ বিখ্যাত গ্ৰন্থ "Philosophiæ Naturalis Principia Mathematica" ত এই সূত্ৰ সমূহৰ ব্যাখ্যা আগবঢ়ায়,[] নিউটনে এই সূত্ৰসমূহ বহুতো ভৌতিক অৱয়ব আৰু প্ৰণালীৰ গতিৰ অধ্যয়ন আৰু ব্যাখ্যা কৰাত ব্যৱহাৰ কৰিছিল।[]

সৰল ব্যাখ্যা

নিউটনৰ সূত্ৰ সমূহ সেইবোৰ অৱয়ব (বস্তু)ৰ ক্ষেত্ৰত প্ৰযোজ্য যাক এই অৰ্থত কণা হিচাপে গণ্য কৰিব পৰা যায়,[] যাতে গতিৰ সময়ত ইয়াৰ প্ৰসাৰণ নগণ্য হয়। অৰ্থাত, প্ৰক্ৰিয়াটোত জড়িত দূৰত্বৰ তুলনাত গতি কৰা বস্তুটোৰ আকাৰ (মাত্ৰা) বহুত সৰু হয়, বা বস্তুটোৰ মাত্ৰাৰ বিকৃতকৰণ বা ঘূৰ্ণনে সামগ্ৰিক বিশ্লেষণত লোনো প্ৰভাব নেপেলায়। সেই মতে আমি এটা গ্ৰহক বিশ্লেষণৰ খাতিৰত তাৰ তৰাটোৰ চাৰিওফালে ঘূৰি থকা এটা কণা বুলি ভাবিব পাৰো।

প্ৰথম অৱস্থাত নিউটনৰ সূত্ৰত স্থিৰ মাত্ৰাৰ বস্তু আৰু মাত্ৰাৰ বিকৃতকৰণ হ’ব পৰা বস্তুৰ সুকীয়া ব্যাখ্যা নাছিল। ১৭৫০ চনত লিঅ’নাৰ্ড অইলাৰে স্থিৰ মাত্ৰাৰ বস্তুৰ বাবে সাধাৰণীকৃত গতিৰ সূত্ৰ আগবঢ়াই, পাছত ইয়াক অইলাৰৰ গতিৰ সূত্ৰ ৰূপে জনা যায়, অইলাৰৰ গতিৰ সূত্ৰ ওপৰত ঊল্লেখিত দুয়োবিধ বস্তুৰ বাবে প্ৰয়োগ কৰিব পাৰি। যদি এটা অৱয়ব নিউটনৰ সূত্ৰ মানি চলা পৃথক পৃথক কণাৰ সমষ্টি হিচাপে প্ৰকাশ কৰিব পাৰো তেনেহ’লে আমি নিউটনৰ সূত্ৰৰ পৰা অইলাৰৰ সূত্ৰ পাব পাৰো। অৱশ্যে অইলাৰৰ সূত্ৰক আমি প্ৰসাৰযোগ্য বস্তুৰ গতিৰ বৰ্ণনাৰ বাবে স্বসমৃদ্ধ সূত্ৰ বুলি ক’ব পাৰো।[]

নিউটনৰ সূত্ৰ সমূহ কেৱল কিছুমান প্ৰসংগ তন্ত্ৰ (ফ্ৰেম)ৰ সাপেক্ষেহে প্ৰযোয্য এই প্ৰসংগ ফ্ৰেম সমূহক জড় প্ৰসংগ তন্ত্ৰ (ফ্ৰেম) বোলা হয়। কিছুমান লিখকৰ মতে প্ৰথম সূত্ৰই হৈছে জড় প্ৰসংগ তন্ত্ৰৰ আক্ষৰিক সংজ্ঞা, এইফালৰ পৰা চাবলৈ গ’লে দেখিম যে দ্বিতীয় সূত্ৰ মাত্ৰ তেতিয়াহে প্ৰযোয্য যেতিয়া আমি পৰ্যবেক্ষন কোনো জড় প্ৰসংগ তন্ত্ৰৰ পৰা কৰিম, সেইবাবে আমি প্ৰথম সূত্ৰক আমি দ্বিতীয় সূত্ৰৰ বিশেষ ৰূপ বুলি ক’ব নোৱাৰো। কিছু সংখ্যক লিখকে প্ৰথম সূত্ৰক দ্বিতীয় সূত্ৰৰ অনুসিদ্ধান্ত বুলিও ক’ব বিছাৰে।[১০][১১] অৱশ্যে নিউটনৰ মৃত্যুলৈকে জড় প্ৰসংগ তন্ত্ৰৰ এই ধাৰণা গঢ় লৈ উঠা নাছিল।

পাছৰ অৱস্থাত নিউটনীয় বলবিদ্যাৰ ক্ষেত্ৰখন আপেক্ষিকতাবাদৰ বিশেষ সূত্ৰই সীমিত কৰি পেলায় যদিও পোহৰৰ গতিবেগতকৈ যতেষ্ঠ কম গতিবেগৰ বস্তু্ৰ বাবে এইবোৰ এতিয়াও সুচল ভাবে ব্যৱহাৰ কৰিব পাৰি।[১২]


প্ৰথম সূত্ৰৰ সৰল ৰূপ

কোনো বাহিৰা বলে ক্ৰিয়া নকৰালৈকে যিকোনো বস্তু যি স্থিতিতে আছে, অৰ্থাৎ গৈ থকা বস্তু এটা সেই গতিতে আৰু ৰৈ থকা বস্তু তেনে অৱস্থাতে থাকিব। উদাহৰণ হিচাবে, এটা দলিয়াই দিয়া মাৰ্বলৰ গতিক বতাহ আৰু মজিয়াৰ ঘৰ্ষণবলে বাধা নিদিয়াহ'লে সি অবিৰতভাৱে চিৰদিনৰ বাবে গৈয়েই থাকিলেহেঁতেন। তেনেদৰে পকা আপেল এটাক মাধ্যাকৰ্ষণ বলে তললৈ টানি নসৰোৱালৈকে সি গছতে থাকিব।

দ্বিতীয় সূত্ৰৰ সৰল ৰূপ

গতিৰ এই সূত্ৰই বল আৰু ত্বৰণৰ সম্পৰ্ক দৰ্শায়।

তৃতীয় সূত্ৰৰ সৰল ৰূপ

এখন ৰকেটে ইনঞ্জিনৰ পৰা পাচলৈ তীব্ৰ গতিত গেচ নিৰ্গত কৰে (ক্ৰিয়া) আৰু এই তীব্ৰগতিৰ গেচৰ বিপৰীত ক্ৰিয়াক্ৰমে ই বিপৰীত দিশত ওপৰলৈ উৰি যায়। জেট প্লেনেও এই সূত্ৰৰ সহায়তে উৰে। আমি সাঁতোৰোতেও পানীত বলপ্ৰয়োগ কৰোঁ আৰু প্ৰতিক্ৰিয়াস্বৰূপে ওপঙি থাকি সন্মুখলৈ আগবাঢ়ি যাওঁ।

নিউটনৰ প্ৰথম সূত্ৰ

সাঁচ:Quote

সাঁচ:Quote এই সূত্ৰৰ মতে যদি মুঠ বলসমষ্টি (এটা বস্তুৰ ওপৰত ক্ৰিয়া কৰা সকলো বলৰ ভেক্টৰ যোগফল) শূন্য হয়, তেনেহ’লে বস্তুটোৰ বেগ ধ্ৰুবক হয়। গাণিতিক ভাবে:

𝐅=0d𝐯dt=0.

গতিকে:

  • স্থিৰ বস্তু এটা কোনো ভাৰসাম্য নষ্টকাৰী বলে ক্ৰিয়া নকৰা পৰ্যন্ত স্থিৰ অৱস্থাতে থাকিব।
  • গতিশীল কোনো বস্তুৱে বাহ্যিক বলে ক্ৰিয়া নকৰা পৰ্যন্ত সমবেগেৰে গতি কৰিব, অৰ্থাত গতিবেগৰ পৰিৱৰ্তন নঘটে।

নিউটনে প্ৰসংগ তন্ত্ৰৰ ধাৰণাৰ বাবে প্ৰথম সূত্ৰ আগবঢ়াই। প্ৰথম সূত্ৰই সিদ্ধান্ত দিয়ে যে অন্ততঃ এটা হ’লেও প্ৰসংগ তন্ত্ৰৰ অৱস্তিতি নিশ্ছিত, যাক নিউটনীয়ান বা জড় প্ৰসংগ তন্ত্ৰ বুলিব পাৰি, যাৰ সাপেক্ষে বলে ক্ৰিয়া নকৰা বস্তুৰ গতি সৰলৰৈখিক আৰু ধ্ৰুবক।[১৩][১০] নিউটনৰ প্ৰথম সূত্ৰক প্ৰায়েই জড়তাৰ সূত্ৰ বুলিও কোৱা হয়, গতিকে কোনো বস্তুৰ কোনো জড় প্ৰসংগ তন্ত্ৰৰ সাপেক্ষে সমবেগৰ চৰ্ত হ’ল, ইয়াৰ লগত জড়িত মুঠ শক্তি শূন্য হ’ব লাগিব। এই মতে আমি প্ৰথম সূত্ৰক এনেদৰেও লিখিব পাৰো: সাঁচ:Quote

দৰাচলতে নিউটনৰ প্ৰথম সূত্ৰ গেলিলিউৱে আগেয়ে দি যোৱা জড়তাৰ সূত্ৰৰেই ৰূপান্তৰ। এৰিষ্টটলৰ মতে বিশ্ব ব্ৰহ্মাণ্ডত প্ৰতিটো বস্তুৰে নিজা প্ৰাকৃতিক স্থান আছে। শিলৰ দৰে গধুৰ বস্তুবোৰ পৃথিৱীৰ দৰে গ্ৰহ বোৰত থাকিব বিছাৰে, পাতল বস্তুবোৰ যেনে ধোঁৱাই আকাশত থাকিব বিছাৰে আৰু তৰাবোৰে স্বৰ্গত (মহাকাশত) থাকিব বিছাৰে। তেওঁৰ মতে বস্তু এটা ইয়াৰ প্ৰাকৃতিক অৱস্থাত থাকে যেতিয়া ই স্থিৰ হৈ থাকে, আৰু ই সৰলৰৈখিক ভাবে আগুৱাই যাই যেতিয়া কোনো শক্তিয়ে ইয়াৰ ওপৰত নিয়মিতভাবে ক্ৰিয়া কৰে, নহ’লে ই পুনৰ স্থিৰ হৈ পৰে। আনহাতেদি গেলিলিউৱে অনুভব কৰিছিল যে বেগৰ পৰিবৰ্তনৰ বাবে বাহ্যিক শক্তিৰ দৰকাৰ, (অৰ্থাত ত্বৰণ), কিন্তু সমবেগৰ বাবে কোনো শক্তিৰ প্ৰয়োজন নাই। ইয়েই নিউটনৰ প্ৰথম সূত্ৰৰ আদি - শক্তি নাই মানে ত্বৰণ নাই।

নিউটনৰ দ্বিতীয় সূত্ৰ

চিত্ৰ:Secondlaw.ogv

দ্বিতীয় সূত্ৰৰ মতে কোনো বস্তুৰ ওপৰত ক্ৰিয়া কৰা মুঠ বল, কোনো জড় প্ৰসংগ তন্ত্ৰত সময় সাপেক্ষে বস্তুটোৰ ৰৈখিক ভৰবেগ p ৰ পৰিবৰ্তনৰ সমা। :

𝐅=d𝐩dt=d(m𝐯)dt,

যিহেতু, সূত্ৰটো কেৱল স্থিৰ ভৰৰ বস্তু(প্ৰণালী)ৰ বাবেহে s,[১৫][১৬][১৭] আমি ভৰঅৱকলনৰ বাহিৰলৈ আনিব পাৰো। গতিকে,

𝐅=md𝐯dt=m𝐚,

য’ত F হৈছে মুঠ প্ৰয়োগ হোৱা শক্তি, m বস্তুটোৰ ভৰ আৰু a বস্তুটোৰ ত্বৰণ। গতিকে প্ৰয়োগ হোৱা মুঠ শক্তিয়ে এটা ত্বৰণৰ সৃষ্টি কৰে, অন্যভাষাত ত্বৰিত বস্তুৰ লগত এটা শক্তি সদায়েই জড়িত হৈ থাকে।

কোনো প্ৰণালীৰ ভৰৰ কোনো হ্ৰাস বা বৃদ্ধিয়ে ভৰবেগৰ পৰিবৰ্তনৰ সৃষ্টি কৰিব। পৰিবৰ্তনশীল ভৰৰ প্ৰণালীৰ বাবে আমাক বেলেগ সমীকৰণৰ প্ৰয়োজন হ’ব।

ঘাত বল

কোনো বল Fএ কোনো ক্ষুদ্ৰ সময়ান্তৰ Δtৰ বাবে কোনো বস্তুৰ ওপৰত ক্ৰিয়া কৰিলে ঘাত বল J ৰ সৃষ্টি হয়, ইয়াক গাণিতিক ভাবে তলত দিয়া দৰে দেখুৱাব পাৰি,[১৮][১৯]

𝐉=Δt𝐅dt.

যিহেতু ভৰবেগৰ সময় অৱকলেই হৈছে বল, গতিকে,

𝐉=Δ𝐩=mΔ𝐯.

ঘাত বল আৰু ভৰবেগৰ এই সম্পৰ্ক দ্ভিতীয় সূত্ৰৰ প্ৰায় সমাৰ্থক।[২০]

ঘাতবলৰ ধাৰণা পদাৰ্থ বিজ্ঞানত ঘৰ্ষণৰ বৰ্ণনা কৰোঁতে প্ৰায়েই ব্যৱহাৰ হয়।[২১]

পৰিবৰ্তনশীল ভৰ প্ৰণালী

সাঁচ:Main

ইন্ধন পুৰি আগলৈ গৈ থকা ৰকেট এটাই এফালে গেছ নিৰ্গত কৰি যায়, ই এটা পৰিবৰ্তনশীল ভৰ প্ৰণালীৰ উদাহৰণ, ইয়াক এটা বন্ধ প্ৰণালী বুলিও ক’ব পৰা নাযায়। এঈইক্ষেত্ৰত আমি পোনপটীয়াকৈ দ্বিতীয় সূত্ৰৰ ব্যৱহাৰ কৰিব নোৱাৰো।[১৬] ক্লেলনাৰ আৰু ক’লেনকাউৰ 'An Introduction to Mechanics' ৰ মতে দ্বিতীয় সূত্ৰ মৌলিকভাবে কণাৰ ক্ষেত্ৰত ব্যৱহাৰ কৰা হয়, ধ্ৰুপদী বিজ্ঞানৰ মতে সকলো কণাৰে নিৰ্দিষ্ট ভৰ থাকে,[১৭] এতিয়া কোনো এক সুসংগঠিত কণাৰ প্ৰণালীৰ ক্ষেত্ৰত আমি দ্বিতীয় সূত্ৰক সকলো কণাৰ মুঠ ভৰক যোগ কৰি পাব পাৰো, যেনে,

𝐅net=M𝐚cm

য’ত Fnet হৈছে মুঠ বাহ্যিক শক্তি, M প্ৰণালীটোৰ মঠ ভৰ, আৰু acm হৈছে প্ৰণালীটোৰ ভৰকেন্দ্ৰৰ ত্বৰণ।

পৰিবৰ্তনশীল ভৰ প্ৰণালী যেনে এটা ৰকেট বা ফুটা থকা এটা পানীৰ টিঙক আমি এইবোৰৰ দৰে সাধাৰণভাবে এটা কণাৰ প্ৰণালী বুলি ধৰি ল’ব নোৱাৰোঁ, গতিকে দ্বিতীয় সূত্ৰকো পোনপতীয়াকৈ প্ৰয়োগ কৰিব নোৱাৰো। এনেকুৱা প্ৰণালীসমূহ যাৰ ভৰ সময়ৰ সৈতে সলনি হৈ থাকে তেনে প্ৰণালীৰ বাবে আমি নিউটনৰ দ্বিতীয় সূত্ৰক ভৰৰ পৰিৱৰ্তনৰ বাবে হোৱা ভৰবেগৰ পৰিৱৰ্তনক অন্তৰ্ভুক্ত কৰি গতিৰ সাধাৰণ সমীকৰণ নতুন ৰূপ পাব পাৰো:[১৫]

𝐅+𝐮dmdt=md𝐯dt

য’ত u হৈছে নতুনকৈ যোগ হোৱা বা এৰি যোৱা ভৰৰ ভৰকেন্দ্ৰ সাপেক্ষে আপেক্ষিক বেগ, কিছু ক্ষেত্ৰত, সমীকৰণৰ বাওঁহাতৰ পদ (u dm/dt)ক পৰিৱৰ্তনশীল ভৰে বস্তুটোৰ ওপৰত সৃষ্টি কৰা বল বুলিও কোৱা হয়, আৰু ইয়াক বলF ভিতৰত ৰখা হয়, গতিকে,

𝐅=m𝐚.

নিউটনৰ তৃতীয় সূত্ৰ

নিউটনৰ তৃতীয় সূত্ৰ, স্কেটাৰ দুজনে এঅজনে আনজনৰ ওপৰত বল প্ৰয়োগ কৰিছে দুয়োৰে বল সমান, কিন্তু বিপৰীতমুখী।

চিত্ৰ:Thirdlaw.ogv

সাঁচ:Cquote

সাঁচ:Cquote ওপৰৰ বাক্যৰ ভাবানুবাদ হ’ব: সাঁচ:Quote

ওপৰৰ বাক্যকেইটাত ব্যৱহাৰ হোৱা "গতি" শব্দটোৰে প্ৰকৃততে, নিউটনে ভৰবেগ বুজাইছে।

তৃতীয় সূত্ৰৰ মতে সকলো শক্তিয়েই হৈছে, বিভিন্ন বস্তুৰ মাজৰ পৰস্পৰ ক্ৰিয়াৰ ফল। ,[২৩][২৪] গতিকে দিশবিহীন শক্তি বা এটা বস্তুৰ ওপৰত ক্ৰিয়া কৰা বলৰ ধাৰণা অমূলক। যেতিয়াই এটা বস্তুৱে দ্বিতীয় বস্তুৰ ওপৰত কোনো বল F প্ৰয়োগ কৰে, দ্বিতীয় বস্তুৱে একে সময়তে -F বল প্ৰথমটোৰ ওপৰত প্ৰয়োগ কৰে। F আৰু −F সদায় সমান আৰু বিপৰীতমুখী হয়। এই সূত্ৰটোক কেতিয়াবা ক্ৰিয়া-প্ৰতিক্ৰিয়াৰ সূত্ৰ বুলিও কোৱা হয়, য’ত F হৈছে ক্ৰিয়া আৰু -F প্ৰতিক্ৰিয়া। ক্ৰিয়া আৰু প্ৰতিক্ৰিয়া সদায় সমসাময়িক হয়।

কাষত দেখুওৱা ছবিখন এজন স্কেতাৰে আনজনৰ ওপৰত প্ৰয়োগ কৰা বল সমান, আৰু দুয়ো এই বল বিপৰীত দিশৰ পৰা প্ৰয়োগ কৰিছে। যদিও দুয়োৰে বল সমান ত্বৰণ সমান নহয়, কম ভৰৰ স্কেতাৰ জনৰ ত্বৰণ আনজনতকৈ নিউটনৰ দ্বিতীয় সূত্ৰ মতে বেছি হ’ব। নিউটনৰ তৃতীয় সূত্ৰৰ দুই বল সদায় একে প্ৰকাৰৰ হয় (যেনে, যদি পথ এটাই গাড়ী এখনৰ চকাত ঘৰ্ষণ বল প্ৰয়োগ কৰি ত্বৰিত কৰে, তেনে সেই বলেই গাড়ীখনক বিপৰীতমুখী মন্থৰণো প্ৰদান কৰিব)। গাণিতিক ভাবে, নিউটনৰ তৃতীয় সূত্ৰ হৈছে এটা একমাত্ৰিক ভেক্টৰ সমীকৰণ, যদি দূটা বস্তু A আৰু Bএ এটাই আনটোৰ ওপৰত বল প্ৰয়োগ কৰে,

𝐅a,b=𝐅b,a

য’ত,

Fa,b Bএ Aৰ ওপৰত প্ৰয়োগ কৰা বল, আৰু
Fb,a Aএ Bৰ ওপৰত প্ৰয়োগ কৰা বল।

নিউটনে তৃতীয় সূত্ৰৰ ৰৈখিক ভৰবেগৰ সংৰক্ষণ সূত্ৰৰ প্ৰমাণ কৰিছিল;[২৫] অৱশ্যে ভৰবেগৰ সংৰক্ষণ আন আন ধাৰণাৰ পৰা ঊদ্ভাৱিত এক মৌলিক ধাৰণা।

গুৰুত্ব আৰু প্ৰযোয্য হোৱাৰ চৰ্ত

নিউটনৰ সূত্ৰ সমূহ প্ৰায় দুশ বছৰ জুৰি চলা বিভিন্ন পৰীক্ষা আৰু প্ৰাকৃতিক পৰিঘটনাৰ যোগেদি সত্যাপন কৰা হৈছিল, আৰু দেখা গৈছিল যে আমাৰ দৈনন্দিন ব্যৱহাৰ্য স্থূল আৰু সীমিত গতিবেগৰ বস্তুবোৰৰ ক্ষেত্ৰত এই সূত্ৰ কেইটাৰ প্ৰভাৱ অপৰিসীম। তেওঁৰেই মহাকৰ্ষণৰ সূত্ৰ আৰু বিভিন্ন কলন গণিতৰ সূত্ৰৰে লগ লাগি এই তিনিটা সূত্ৰই প্ৰথমবাৰৰ বাবে কোনো বিস্তৃত ভৌতিক পৰিঘটনাৰ থুলমুল বৰ্ণনা আগবঢ়াবলৈ সক্ষম হৈছিল।

এই সূত্ৰকেইটা পূৰ্বতে ঊল্লেখ কৰাৰ দৰে দৈনন্দিন ব্যৱহাৰ্য স্থূল আৰু সীমিত গতিবেগৰ বস্তুবোৰৰ ক্ষেত্ৰত প্ৰযোয্য। কিন্তু এই সূত্ৰকেইটা (লগতে ধ্ৰুপদী বিদ্যুত চুম্বকত্ব আৰু মহাকৰ্ষণৰ সূত্ৰসমূহ) কিছুমান বিশেষ ক্ষেত্ৰৰ বাবে উপযুক্ত নহয়, উদাহৰণ স্বৰূপে অতিবেগী পদাৰ্থৰ ক্ষেত্ৰত (বিশেষ আপেক্ষিকতাবাদৰ মতে ভৰবেগৰ সমীকৰণত ভৰ আৰু বেগৰ উপৰিও লৰেঞ্জ সংখ্যাও অন্তৰ্ভুক্ত হ’ব লাগিব) বা অতি শক্তিশালী মহাকৰ্ষণ শক্তিৰ ক্ষেত্ৰত এই সূত্ৰ কেইটা প্ৰযোয্য নহয়। গতিকে এডাল অৰ্ধপৰিবাহীৰ মাজেৰে বিদ্যুৎৰ পৰিবহণ, কোনো পদাৰ্থৰ আলোক ধৰ্ম বা অতিপৰিবাহীতা আদি পৰিঘটনাৰ এই সূত্ৰসমূহে কোনো ধৰণৰ ব্যাখ্যা আগবঢ়াব নোৱাৰে। এইবোৰৰ ব্যাখ্যাৰ বাবে সাধাৰণ আপেক্ষিকতাবাদ, বা কোৱাণ্টাম ক্ষেত্ৰ মতবাদ আদিৰ দৰে নতুন মতবাদৰ প্ৰয়োজন।


কোৱাণ্টাম বলবিদ্যাত বল, ভৰবেগ, আৰু স্থান আদিৰ দৰে ৰাশি সমূহৰ সংজ্ঞা কোৱাণ্টাম অৱস্থাটোৰ লগত ৰৈখিক অপাৰেটৰ সমূহৰ দ্বাৰা দিয়া হয়, পোহৰৰ গতিবেগতকৈ যতেষ্ঠ কম বেগৰ কণাৰ বাবে, এই অপাৰেটৰ সমূহৰ পৰা পোৱা সংজ্ঞাৰ সৈতে একে হয়।

ৰক্ষণশীলতাৰ সূত্ৰৰ সৈতে সম্পৰ্ক

লগতে চাওক

সাঁচ:Wikipedia-Books

সাঁচ:-

তথ্যসূত্ৰ

সাঁচ:Reflist

বাহ্যিক সংযোগ

  1. সাঁচ:Cite video
  2. For explanations of Newton's laws of motion by Newton in the early 18th century, by the physicist William Thomson (Lord Kelvin) in the mid-19th century, and by a modern text of the early 21st century, see:-
  3. Halliday
  4. সাঁচ:Cite book
  5. সাঁচ:Cite book
  6. See the Principia on line at Andrew Motte Translation
  7. Andrew Motte translation of Newton's Principia (1687) Axioms or Laws of Motion
  8. [...]while Newton had used the word 'body' vaguely and in at least three different meanings, Euler realized that the statements of Newton are generally correct only when applied to masses concentrated at isolated points;সাঁচ:Cite book
  9. সাঁচ:Cite book
  10. ১০.০ ১০.১ সাঁচ:Cite journal
  11. সাঁচ:Cite book
  12. In making a modern adjustment of the second law for (some of) the effects of relativity, m would be treated as the relativistic mass, producing the relativistic expression for momentum, and the third law might be modified if possible to allow for the finite signal propagation speed between distant interacting particles.
  13. সাঁচ:Cite book
  14. Lewin, Newton’s First, Second, and Third Laws, Lecture 6. (6:53–11:06)
  15. ১৫.০ ১৫.১ সাঁচ:Cite journal "We may conclude emphasizing that Newton's second law is valid for constant mass only. When the mass varies due to accretion or ablation, [an alternate equation explicitly accounting for the changing mass] should be used."
  16. ১৬.০ ১৬.১ সাঁচ:Cite book [Emphasis as in the original]
  17. ১৭.০ ১৭.১ সাঁচ:Cite book
  18. Hannah, J, Hillier, M J, Applied Mechanics, p221, Pitman Paperbacks, 1971
  19. সাঁচ:Cite book
  20. সাঁচ:Cite book
  21. সাঁচ:Cite book
  22. Lewin, Newton’s First, Second, and Third Laws, Lecture 6. (14:11–16:00)
  23. সাঁচ:Cite journal
  24. সাঁচ:Cite web
  25. Newton, Principia, Corollary III to the laws of motion